answering Q1:
covid = read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv")
state.of.interest = "California"
state_new_cases = covid %>% 
  filter(state == state.of.interest) %>% 
  group_by(county) %>% 
  mutate(new_daily_cases = cases - lag(cases)) %>% 
  ungroup()
most_cumulative_cases = state_new_cases %>% 
  group_by(county) %>% 
  summarise(cum_cases = sum(cases)) %>% 
  ungroup() %>% 
  slice_max(cum_cases, n = 5)
most_new_cases = state_new_cases %>% 
  filter(date == max(date)) %>% 
  slice_max(new_daily_cases, n = 5) %>% 
  select(county, new_daily_cases)
knitr::kable(most_cumulative_cases, caption = "5 Counties with the Most Cumulative Cases", col.names = c("County", "Cumulative Cases"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11) 
5 Counties with the Most Cumulative Cases
| County | Cumulative Cases | 
| Los Angeles | 18,408,002 | 
| Riverside | 3,611,739 | 
| Orange | 3,293,539 | 
| San Bernardino | 2,972,488 | 
| San Diego | 2,832,227 | 
knitr::kable(most_new_cases, caption = "5 Counties with the Most New Cases", col.names = c("County", "New Daily Cases"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11)
5 Counties with the Most New Cases
| County | New Daily Cases | 
| Los Angeles | 809 | 
| San Diego | 265 | 
| Orange | 185 | 
| Fresno | 159 | 
| San Bernardino | 156 | 
PopulationEstimates <- read_excel("~/github/geog-176A-labs/data/PopulationEstimates.xls", skip = 2)
CA_county_pop = PopulationEstimates %>% 
  filter(State == "CA") %>% 
  select(state = State, county = Area_Name, fips = FIPStxt, pop_19 = POP_ESTIMATE_2019)
CA_covid = covid %>% 
  filter(state == "California") %>% 
  group_by(county, fips) %>% 
  summarise(CA_covid_cases = sum(cases)) %>% 
  ungroup()
CA_covid_new = covid %>% 
  filter(state == "California", date == max(date))
CA_per_cap = inner_join(CA_covid, CA_county_pop, by = "fips") %>% 
  select(county.x, CA_covid_cases, pop_19) %>% 
  mutate(most_per_cap = (CA_covid_cases / pop_19)) %>% 
  slice_max(most_per_cap, n = 5)
NEW_per_cap = left_join(CA_covid_new, CA_county_pop, by = "fips") %>% 
  summarise(county.x, cases, pop_19, new_per_cap = (cases / pop_19)) %>% 
  ungroup() %>% 
  slice_max(new_per_cap, n = 5)
knitr::kable(CA_per_cap, caption = "5 Counties with the Most Cumulative Cases Per Capita", col.names = c("County", "Cumulative Cases", "Population", "Cases per Capita"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11) 
5 Counties with the Most Cumulative Cases Per Capita
| County | Cumulative Cases | Population | Cases per Capita | 
| Imperial | 868,946 | 181,215 | 4.795111 | 
| Kings | 423,990 | 152,940 | 2.772264 | 
| Tulare | 908,771 | 466,195 | 1.949337 | 
| Kern | 1,660,479 | 900,202 | 1.844563 | 
| Los Angeles | 18,408,002 | 10,039,107 | 1.833629 | 
knitr::kable(NEW_per_cap, caption = "5 Counties with the Most New Cases Per Capita", col.names = c("County", "New Cases", "Population", "New Cases per Capita"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11)
5 Counties with the Most New Cases Per Capita
| County | New Cases | Population | New Cases per Capita | 
| Imperial | 11,274 | 181,215 | 0.0622134 | 
| Kings | 7,097 | 152,940 | 0.0464038 | 
| Kern | 30,735 | 900,202 | 0.0341423 | 
| Tulare | 15,114 | 466,195 | 0.0324199 | 
| Merced | 8,541 | 277,680 | 0.0307584 | 
CA_covid_14 = covid %>% 
  filter(state == "California", date > max(date) - 14)
CA_14_per100 = CA_covid_14 %>% 
  group_by(date) %>% 
  summarize(CA_14_cases = sum(cases)) %>% 
  mutate(CA_14_100 = (CA_14_cases / 100000))
knitr::kable(CA_14_per100, caption = "Total New Cases in the Last 14 Days per 100,000 People", col.names = c("Date", "Daily Total New Cases", "Daily New Cases per 100,000"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11)
Total New Cases in the Last 14 Days per 100,000 People
| Date | Daily Total New Cases | Daily New Cases per 100,000 | 
| 2020-08-31 | 712,541 | 7.12541 | 
| 2020-09-01 | 716,628 | 7.16628 | 
| 2020-09-02 | 722,035 | 7.22035 | 
| 2020-09-03 | 727,398 | 7.27398 | 
| 2020-09-04 | 732,691 | 7.32691 | 
| 2020-09-05 | 737,073 | 7.37073 | 
| 2020-09-06 | 740,233 | 7.40233 | 
| 2020-09-07 | 742,689 | 7.42689 | 
| 2020-09-08 | 746,113 | 7.46113 | 
| 2020-09-09 | 749,196 | 7.49196 | 
| 2020-09-10 | 753,017 | 7.53017 | 
| 2020-09-11 | 757,125 | 7.57125 | 
| 2020-09-12 | 760,581 | 7.60581 | 
| 2020-09-13 | 763,389 | 7.63389 | 
Result:
total_cases = state_new_cases %>% 
  filter(date == max(date)) %>% 
  select(county, cases) %>% 
  arrange(-cases)
total_new_cases = state_new_cases %>% 
  group_by(date) %>% 
  summarize(new_total_cases = sum(cases)) %>% 
  ungroup() %>% 
  arrange(-new_total_cases)
safe_counties = inner_join(CA_covid, CA_county_pop, by = "fips") %>% 
  select(county.x, CA_covid_cases, pop_19) %>% 
  mutate(most_per_cap = CA_covid_cases / pop_19) %>%
  arrange(most_per_cap)
knitr::kable(total_cases, caption = "Total Number of Cases", col.names = c("County", "Total Cases"), format.args = list(big.mark = ",")) %>% 
  kable_styling("striped", full_width = TRUE, font_size = 11)
Total Number of Cases
| County | Total Cases | 
| Los Angeles | 253,985 | 
| Riverside | 55,073 | 
| Orange | 52,121 | 
| San Bernardino | 50,699 | 
| San Diego | 42,742 | 
| Kern | 30,735 | 
| Fresno | 27,076 | 
| Sacramento | 20,183 | 
| Alameda | 20,012 | 
| Santa Clara | 19,549 | 
| San Joaquin | 19,108 | 
| Stanislaus | 15,976 | 
| Contra Costa | 15,351 | 
| Tulare | 15,114 | 
| Ventura | 11,759 | 
| Imperial | 11,274 | 
| San Francisco | 10,305 | 
| San Mateo | 9,077 | 
| Monterey | 8,992 | 
| Santa Barbara | 8,642 | 
| Merced | 8,541 | 
| Kings | 7,097 | 
| Sonoma | 6,701 | 
| Marin | 6,464 | 
| Solano | 5,825 | 
| Madera | 4,150 | 
| Placer | 3,316 | 
| San Luis Obispo | 3,222 | 
| Yolo | 2,677 | 
| Butte | 2,629 | 
| Santa Cruz | 2,043 | 
| Sutter | 1,564 | 
| Napa | 1,557 | 
| San Benito | 1,238 | 
| Yuba | 1,057 | 
| El Dorado | 1,034 | 
| Mendocino | 789 | 
| Lassen | 727 | 
| Shasta | 612 | 
| Glenn | 517 | 
| Colusa | 489 | 
| Nevada | 482 | 
| Tehama | 471 | 
| Humboldt | 447 | 
| Lake | 393 | 
| Calaveras | 298 | 
| Amador | 277 | 
| Tuolumne | 213 | 
| Inyo | 177 | 
| Mono | 163 | 
| Siskiyou | 155 | 
| Del Norte | 129 | 
| Mariposa | 75 | 
| Plumas | 42 | 
| Modoc | 21 | 
| Trinity | 16 | 
| Sierra | 6 | 
| Alpine | 2 | 
knitr::kable(total_new_cases, caption = "Total Number of New Cases", col.names = c("Date", "Total New Cases"), format.args = list(big.mark = ",")) %>%
  kable_styling("striped", full_width = TRUE, font_size = 11)
Total Number of New Cases
| Date | Total New Cases | 
| 2020-09-13 | 763,389 | 
| 2020-09-12 | 760,581 | 
| 2020-09-11 | 757,125 | 
| 2020-09-10 | 753,017 | 
| 2020-09-09 | 749,196 | 
| 2020-09-08 | 746,113 | 
| 2020-09-07 | 742,689 | 
| 2020-09-06 | 740,233 | 
| 2020-09-05 | 737,073 | 
| 2020-09-04 | 732,691 | 
| 2020-09-03 | 727,398 | 
| 2020-09-02 | 722,035 | 
| 2020-09-01 | 716,628 | 
| 2020-08-31 | 712,541 | 
| 2020-08-30 | 706,589 | 
| 2020-08-29 | 702,499 | 
| 2020-08-28 | 698,389 | 
| 2020-08-27 | 692,962 | 
| 2020-08-26 | 687,612 | 
| 2020-08-25 | 682,320 | 
| 2020-08-24 | 676,236 | 
| 2020-08-23 | 669,944 | 
| 2020-08-22 | 665,325 | 
| 2020-08-21 | 659,991 | 
| 2020-08-20 | 653,401 | 
| 2020-08-19 | 646,742 | 
| 2020-08-18 | 640,499 | 
| 2020-08-17 | 634,991 | 
| 2020-08-16 | 628,508 | 
| 2020-08-15 | 621,981 | 
| 2020-08-14 | 613,243 | 
| 2020-08-13 | 603,212 | 
| 2020-08-12 | 595,097 | 
| 2020-08-11 | 586,078 | 
| 2020-08-10 | 574,267 | 
| 2020-08-09 | 563,244 | 
| 2020-08-08 | 556,158 | 
| 2020-08-07 | 548,142 | 
| 2020-08-06 | 541,013 | 
| 2020-08-05 | 532,776 | 
| 2020-08-04 | 527,258 | 
| 2020-08-03 | 522,235 | 
| 2020-08-02 | 515,937 | 
| 2020-08-01 | 509,507 | 
| 2020-07-31 | 502,273 | 
| 2020-07-30 | 494,269 | 
| 2020-07-29 | 486,039 | 
| 2020-07-28 | 474,951 | 
| 2020-07-27 | 467,103 | 
| 2020-07-26 | 459,338 | 
| 2020-07-25 | 453,327 | 
| 2020-07-24 | 443,096 | 
| 2020-07-23 | 433,175 | 
| 2020-07-22 | 422,528 | 
| 2020-07-21 | 410,366 | 
| 2020-07-20 | 400,195 | 
| 2020-07-19 | 391,460 | 
| 2020-07-18 | 383,194 | 
| 2020-07-17 | 374,922 | 
| 2020-07-16 | 364,761 | 
| 2020-07-15 | 355,497 | 
| 2020-07-14 | 346,593 | 
| 2020-07-13 | 336,206 | 
| 2020-07-12 | 327,676 | 
| 2020-07-11 | 320,030 | 
| 2020-07-10 | 311,505 | 
| 2020-07-09 | 303,516 | 
| 2020-07-08 | 296,304 | 
| 2020-07-07 | 287,766 | 
| 2020-07-06 | 277,869 | 
| 2020-07-05 | 271,587 | 
| 2020-07-04 | 265,176 | 
| 2020-07-03 | 256,298 | 
| 2020-07-02 | 248,198 | 
| 2020-07-01 | 239,764 | 
| 2020-06-30 | 232,153 | 
| 2020-06-29 | 223,995 | 
| 2020-06-28 | 216,955 | 
| 2020-06-27 | 211,453 | 
| 2020-06-26 | 207,027 | 
| 2020-06-25 | 201,413 | 
| 2020-06-24 | 195,889 | 
| 2020-06-23 | 191,039 | 
| 2020-06-22 | 184,620 | 
| 2020-06-21 | 178,807 | 
| 2020-06-20 | 174,854 | 
| 2020-06-19 | 170,843 | 
| 2020-06-18 | 167,135 | 
| 2020-06-17 | 163,381 | 
| 2020-06-16 | 159,131 | 
| 2020-06-15 | 155,662 | 
| 2020-06-14 | 152,953 | 
| 2020-06-13 | 150,434 | 
| 2020-06-12 | 147,285 | 
| 2020-06-11 | 143,709 | 
| 2020-06-10 | 140,139 | 
| 2020-06-09 | 137,245 | 
| 2020-06-08 | 134,287 | 
| 2020-06-07 | 131,997 | 
| 2020-06-06 | 129,147 | 
| 2020-06-05 | 126,510 | 
| 2020-06-04 | 122,917 | 
| 2020-06-03 | 120,407 | 
| 2020-06-02 | 118,081 | 
| 2020-06-01 | 115,643 | 
| 2020-05-31 | 113,114 | 
| 2020-05-30 | 110,100 | 
| 2020-05-29 | 107,043 | 
| 2020-05-28 | 104,071 | 
| 2020-05-27 | 101,873 | 
| 2020-05-26 | 99,924 | 
| 2020-05-25 | 97,017 | 
| 2020-05-24 | 94,743 | 
| 2020-05-23 | 92,815 | 
| 2020-05-22 | 90,801 | 
| 2020-05-21 | 88,488 | 
| 2020-05-20 | 86,125 | 
| 2020-05-19 | 83,981 | 
| 2020-05-18 | 81,943 | 
| 2020-05-17 | 80,366 | 
| 2020-05-16 | 78,933 | 
| 2020-05-15 | 77,015 | 
| 2020-05-14 | 74,947 | 
| 2020-05-13 | 73,218 | 
| 2020-05-12 | 71,150 | 
| 2020-05-11 | 69,514 | 
| 2020-05-10 | 68,051 | 
| 2020-05-09 | 66,824 | 
| 2020-05-08 | 64,616 | 
| 2020-05-07 | 62,481 | 
| 2020-05-06 | 60,787 | 
| 2020-05-05 | 58,848 | 
| 2020-05-04 | 56,333 | 
| 2020-05-03 | 55,072 | 
| 2020-05-02 | 53,753 | 
| 2020-05-01 | 52,318 | 
| 2020-04-30 | 50,470 | 
| 2020-04-29 | 48,904 | 
| 2020-04-28 | 46,570 | 
| 2020-04-27 | 45,208 | 
| 2020-04-26 | 43,691 | 
| 2020-04-25 | 42,590 | 
| 2020-04-24 | 41,368 | 
| 2020-04-23 | 39,534 | 
| 2020-04-22 | 37,573 | 
| 2020-04-21 | 35,844 | 
| 2020-04-20 | 33,862 | 
| 2020-04-19 | 31,544 | 
| 2020-04-18 | 30,829 | 
| 2020-04-17 | 29,398 | 
| 2020-04-16 | 28,142 | 
| 2020-04-15 | 27,107 | 
| 2020-04-14 | 25,758 | 
| 2020-04-13 | 24,334 | 
| 2020-04-12 | 23,323 | 
| 2020-04-11 | 22,421 | 
| 2020-04-10 | 21,366 | 
| 2020-04-09 | 20,191 | 
| 2020-04-08 | 19,043 | 
| 2020-04-07 | 17,540 | 
| 2020-04-06 | 16,361 | 
| 2020-04-05 | 15,202 | 
| 2020-04-04 | 13,796 | 
| 2020-04-03 | 12,569 | 
| 2020-04-02 | 11,190 | 
| 2020-04-01 | 9,857 | 
| 2020-03-31 | 8,583 | 
| 2020-03-30 | 7,421 | 
| 2020-03-29 | 6,321 | 
| 2020-03-28 | 5,566 | 
| 2020-03-27 | 4,915 | 
| 2020-03-26 | 4,060 | 
| 2020-03-25 | 3,183 | 
| 2020-03-24 | 2,644 | 
| 2020-03-23 | 2,240 | 
| 2020-03-22 | 1,851 | 
| 2020-03-21 | 1,544 | 
| 2020-03-20 | 1,283 | 
| 2020-03-19 | 1,067 | 
| 2020-03-18 | 893 | 
| 2020-03-17 | 732 | 
| 2020-03-16 | 588 | 
| 2020-03-15 | 478 | 
| 2020-03-14 | 381 | 
| 2020-03-13 | 320 | 
| 2020-03-12 | 252 | 
| 2020-03-11 | 202 | 
| 2020-03-10 | 179 | 
| 2020-03-09 | 172 | 
| 2020-03-08 | 112 | 
| 2020-03-07 | 100 | 
| 2020-03-06 | 81 | 
| 2020-03-05 | 67 | 
| 2020-03-04 | 55 | 
| 2020-03-03 | 45 | 
| 2020-03-02 | 38 | 
| 2020-03-01 | 33 | 
| 2020-02-29 | 28 | 
| 2020-02-28 | 27 | 
| 2020-02-26 | 26 | 
| 2020-02-27 | 26 | 
| 2020-02-24 | 11 | 
| 2020-02-25 | 11 | 
| 2020-02-21 | 9 | 
| 2020-02-22 | 9 | 
| 2020-02-23 | 9 | 
| 2020-02-20 | 8 | 
| 2020-02-10 | 7 | 
| 2020-02-11 | 7 | 
| 2020-02-12 | 7 | 
| 2020-02-13 | 7 | 
| 2020-02-14 | 7 | 
| 2020-02-15 | 7 | 
| 2020-02-16 | 7 | 
| 2020-02-17 | 7 | 
| 2020-02-18 | 7 | 
| 2020-02-19 | 7 | 
| 2020-02-02 | 6 | 
| 2020-02-03 | 6 | 
| 2020-02-04 | 6 | 
| 2020-02-05 | 6 | 
| 2020-02-06 | 6 | 
| 2020-02-07 | 6 | 
| 2020-02-08 | 6 | 
| 2020-02-09 | 6 | 
| 2020-01-31 | 3 | 
| 2020-02-01 | 3 | 
| 2020-01-26 | 2 | 
| 2020-01-27 | 2 | 
| 2020-01-28 | 2 | 
| 2020-01-29 | 2 | 
| 2020-01-30 | 2 | 
| 2020-01-25 | 1 | 
knitr::kable(safe_counties, caption = "List of Safe Counties", col.names = c("County", "Total Cases", "Population", "Total Cases per Capita"), format.args = list(big.mark = ",")) %>%
  kable_styling("striped", full_width = TRUE, font_size = 11)
List of Safe Counties
| County | Total Cases | Population | Total Cases per Capita | 
| Modoc | 382 | 8,841 | 0.0432078 | 
| Trinity | 679 | 12,285 | 0.0552707 | 
| Sierra | 286 | 3,005 | 0.0951747 | 
| Plumas | 2,393 | 18,807 | 0.1272399 | 
| Siskiyou | 7,622 | 43,539 | 0.1750614 | 
| Shasta | 33,700 | 180,080 | 0.1871390 | 
| Tuolumne | 10,829 | 54,478 | 0.1987775 | 
| Humboldt | 28,240 | 135,558 | 0.2083241 | 
| Alpine | 280 | 1,129 | 0.2480071 | 
| Calaveras | 12,989 | 45,905 | 0.2829539 | 
| Nevada | 28,495 | 99,755 | 0.2856498 | 
| Lake | 18,431 | 64,386 | 0.2862579 | 
| El Dorado | 57,750 | 192,843 | 0.2994664 | 
| Mariposa | 5,163 | 17,203 | 0.3001221 | 
| Amador | 12,057 | 39,752 | 0.3033055 | 
| Tehama | 20,465 | 65,084 | 0.3144398 | 
| Del Norte | 9,065 | 27,812 | 0.3259384 | 
| Mendocino | 34,021 | 86,749 | 0.3921774 | 
| Santa Cruz | 108,695 | 273,213 | 0.3978398 | 
| Butte | 95,465 | 219,186 | 0.4355433 | 
| Placer | 180,424 | 398,329 | 0.4529522 | 
| Inyo | 8,610 | 18,039 | 0.4772992 | 
| Santa Clara | 1,132,263 | 1,927,852 | 0.5873184 | 
| Yuba | 46,561 | 78,668 | 0.5918671 | 
| San Luis Obispo | 175,100 | 283,111 | 0.6184853 | 
| Napa | 85,313 | 137,744 | 0.6193591 | 
| Sacramento | 1,002,040 | 1,552,058 | 0.6456202 | 
| Sonoma | 322,561 | 494,336 | 0.6525137 | 
| Yolo | 145,881 | 220,500 | 0.6615918 | 
| Contra Costa | 816,257 | 1,153,526 | 0.7076191 | 
| Alameda | 1,228,491 | 1,671,329 | 0.7350384 | 
| Solano | 336,017 | 447,643 | 0.7506361 | 
| Sutter | 73,365 | 96,971 | 0.7565664 | 
| San Mateo | 616,970 | 766,573 | 0.8048418 | 
| Ventura | 684,879 | 846,006 | 0.8095439 | 
| San Francisco | 723,507 | 881,549 | 0.8207224 | 
| Mono | 12,171 | 14,444 | 0.8426336 | 
| San Diego | 2,832,227 | 3,338,330 | 0.8483964 | 
| Glenn | 25,861 | 28,393 | 0.9108231 | 
| San Benito | 62,376 | 62,808 | 0.9931219 | 
| Monterey | 445,704 | 434,061 | 1.0268234 | 
| Orange | 3,293,539 | 3,175,692 | 1.0371091 | 
| Colusa | 24,493 | 21,547 | 1.1367244 | 
| Madera | 191,712 | 157,327 | 1.2185575 | 
| Santa Barbara | 597,872 | 446,499 | 1.3390220 | 
| San Joaquin | 1,024,851 | 762,148 | 1.3446876 | 
| San Bernardino | 2,972,488 | 2,180,085 | 1.3634734 | 
| Fresno | 1,403,937 | 999,101 | 1.4052003 | 
| Riverside | 3,611,739 | 2,470,546 | 1.4619193 | 
| Lassen | 45,008 | 30,573 | 1.4721486 | 
| Merced | 409,128 | 277,680 | 1.4733794 | 
| Stanislaus | 815,215 | 550,660 | 1.4804326 | 
| Marin | 420,750 | 258,826 | 1.6256095 | 
| Los Angeles | 18,408,002 | 10,039,107 | 1.8336294 | 
| Kern | 1,660,479 | 900,202 | 1.8445627 | 
| Tulare | 908,771 | 466,195 | 1.9493367 | 
| Kings | 423,990 | 152,940 | 2.7722636 | 
| Imperial | 868,946 | 181,215 | 4.7951108 | 
 
 
Answering Q2:
state_level = covid %>% 
  filter(state %in% c("New York", "California", "Louisiana", "Florida")) %>% 
  group_by(date, state) %>% 
  summarize(cases = sum(cases)) %>% 
  ungroup() %>% 
  group_by(state) %>% 
  mutate(new_cases = cases - lag(cases)) %>% 
  mutate(roll_7 = rollmean(new_cases, 7, na.pad = TRUE, align = "left")) %>% 
  filter(new_cases > 0)
  
ggplot(state_level, aes(x = date)) +
  geom_col(aes(y = new_cases), col = "#b9a9d6", fill = "#dac8fa") +
  geom_line(aes(y = roll_7), col = "#8a7ba6", size = .5) +
  ggthemes::theme_clean() +
  labs(title = paste("New Cases")) +
  theme(plot.title = element_text(size = 11, face = 'bold'), plot.background = element_rect(fill = "white"), panel.background = element_rect(fill = "white")) +
  facet_grid(~state, scales = "free_y")

CAS_PER_CAP = PopulationEstimates %>% 
  select(POP_ESTIMATE_2019, Area_Name) %>% 
  right_join(state_level, by = c("Area_Name" = "state")) %>% 
  mutate(cases_per_cap = (new_cases / POP_ESTIMATE_2019)) %>% 
  mutate(roll_7 = rollmean(cases_per_cap, 7, na.pad = TRUE, align = "left")) %>% 
  filter(cases_per_cap > 0)
ggplot(CAS_PER_CAP, aes(x = date)) +
  geom_col(aes(y = cases_per_cap), col = "#b9a9d6", fill = "#dac8fa") +
  geom_line(aes(y = roll_7), col = "#8a7ba6", size = .5) +
  ggthemes::theme_clean() +
  labs(title = paste("New Cases Per Capita")) +
  theme(plot.title = element_text(size = 11, face = 'bold'), plot.background = element_rect(fill = "white"), panel.background = element_rect(fill = "white")) +
  facet_grid(~Area_Name, scales = "free_y")
